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Future space mission concepts and designs pose many networking challenges for 

command, telemetry, and science data applications with diverse end-to-end data delivery 

needs.  For future end-to-end architecture designs, a key challenge is meeting expected 

application quality of service requirements for multiple simultaneous mission data flows 

with options to use diverse onboard local data buses, commercial ground networks, and 

multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links.  

Effectively utilizing a complex network topology requires orchestration and direction that 

spans the many discrete, individually addressable computer systems, which cause them to 

act in concert to achieve the overall network goals.  The system must be intelligent enough to 

not only function under nominal conditions, but also adapt to unexpected situations, and 

reorganize or adapt to perform roles not originally intended for the system or explicitly 

programmed.  This paper describes architecture features of cognitive networking within the 

future NASA space communications infrastructure, and interacting with the legacy systems 

and infrastructure in the meantime.  The paper begins by discussing the need for increased 

automation, including inter-system collaboration.  This discussion motivates the features of 

an architecture including cognitive networking for future missions and relays, 

interoperating with both existing endpoint-based networking models and emerging 

information-centric models.  From this basis, we discuss progress on a proof-of-concept 

implementation of this architecture as a cognitive networking on-orbit application on the 

SCaN Testbed attached to the International Space Station. 

I. Introduction 

PACECRAFT and mission architectures are growing increasingly complex and networked.  Networks 

onboard spacecraft are connecting ever-growing numbers of instruments, flight computers, and other 

components.  For future human spaceflight, whether on the International Space Station (ISS), or for exploration 

missions to the moon, Mars, or other destinations, networking technology is critical for not only on-board systems, 

but also tying together mission systems between the ground and space segments1,2.  Networking technology also has 
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a role in formation-flying missions, fractionated spacecraft architectures, hosted payload systems, and other mission 

concepts.  NASA's space communications infrastructure is also undergoing changes in order to keep up with the 

needs of its mission customers3,4. 

This paper begins with a description of relevant features of the NASA future space communications architecture, 

identifies the need for cognitive communications, and highlights the research challenges that we are pursuing at the 

NASA Glenn Research Center (GRC) in this area.  Section II of this document describes architecture concepts 

required to meet these challenges.  Section III discusses an initial intelligent routing software effort being worked at 

GRC, and Section IV concludes with a selection of technology gaps and future work that we believe is necessary 

going forward towards developing cognitive networking systems that can be integrated into SCaN’s infrastructure. 

A. Future NASA Space Communications Infrastructure 

The NASA Space Communications and Navigation (SCaN) program operates the Space Network (SN), Near-

Earth Network (NEN), and Deep Space Network (DSN) that provide critical services for many space missions.  The 

three separate SCaN networks are currently transitioning into elements of a single integrated network, with a 

primary goal of reducing operations costs.  Figure 1, from the SCaN architecture definition5 provides a high-level 

overview of the future architecture.  This new architecture is expected to be completely seamless, offering standard 

services, service interfaces, and scheduling across all network elements.  Additionally, this architecture is expected 

to have the capability to support controlling any network element from any SCaN operations center, with the 

possibility to rotate control of specific elements from center to center4. 

The future service offerings will range across the communications stack, from raw signal services, to bitstream, 

link-layer frame, network / packet, and delay-tolerant networking.  The network will also provide spacecraft timing 

or clock calibration services, tracking services, and radiometric measurements.  A wide range of missions need to be 

supported, including human spaceflight (e.g. ISS, EM-2), near-Earth flagship missions (e.g. JWST), cubesats, and 

deep-space robotic exploration missions (e.g. Mars rovers).  Commercial and international missions and service 

providers are expected to be part of the future Solar System Internet (SSI). 

Major drivers for cognitive networking in this architecture include: 

 Reducing the user burden will make it easier for missions to perform service management and obtain access 

to diverse types of services across the different network elements. 

 
Figure 1. Future SCaN Network Architecture 
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 Mitigating operational risks due to growing complexity will be key in supporting the many different types of 

services, configurations, and scenarios that can take place, especially as the network grows in size.  If this 

complexity can be managed by machines, and offload human operators in SCaN, it will allow more missions 

and more complex missions to be supported in a cost-effective way. 

 Providing communications and navigation services in locations where humans will not frequently be in real-

time control (e.g. on and around the moon and other planets) will be important.  The network will need to 

operate semi-autonomously or fully autonomously in order to provide critical services in absence of human 

control. 

The legacy infrastructure supporting lower-layer services will coexist with new networking services.  Many 

resources such as spectrum, access times, etc, will continue to be managed and scheduled to accommodate legacy 

users that do not have cognitive radios, media access control technologies, or operations across large delays or 

unidirectional links.  This will be the case even after cognitive networking and other technologies supporting on-

demand scheduling capabilities become available for use. 

In addition to ground-based antennas, space-based relay services are a part of both the current SN and the future 

infrastructure6, and new relay spacecraft capabilities are currently being investigated for support of internetworking 

services.  In order to support missions on the surfaces and in-orbit around Mars, the moon, and other bodies, there 

may be relays around other bodies and frequent disconnections from the terrestrial Earth-based infrastructure and 

operations center(s) with human operators.   

Cognitive networking’s flexibility to support multiple types of mission architecture with differing networking 

needs will be a key capability.  Flagship missions are very complex, and have multiple internal fault-tolerance 

mechanisms, helping to increase their reliability, mission lifetime, and ability to meet mission success criteria.  

Alternative mission concepts have emerged, such as fractionated satellites, clusters, swarms, and other architectures 

involving a network of cooperating flight systems. These collections of systems meet their mission needs by 

working together over the network, and the availability, reliability, and performance of the network can be a major 

factor in mission success.  Different types of cognitive technology are needed to meet the needs of specific missions, 

ranging across simple automation tasks, orchestration of large systems, and up to fully autonomous cooperation of 

distributed agents.  For either flagship or small spacecraft missions, autonomous network operations will be critical, 

and the technologies employed for cognitive networking will be flexible for a wide range of mission needs. 

B. Intelligent Routing Efforts at NASA Glenn Research Center 

In the past, we have done a number of loosely-related networking experiments onboard the SCaN Testbed, in 

orbit attached to the International Space Station.  For instance, we worked on experimentation with running IP over 

protocols published by the Consultative Committee for Space Data Systems (CCSDS), supported testing and 

profiling of Delay/Distruption-Tolerant Networking (DTN) applications, and supported multi-layer security 

experiments7.  Going forward, the SCaN Testbed project has changed scope and focus to become the Cognitive 

Communications Project at NASA’s Glenn Research Center (GRC).  We have unified and correspondingly 

transformed our networking efforts towards intelligent routing.  The NASA InTelligent ROuting (NITRO) effort is 

our new direction. NITRO is developing and maturing technology that will improve future space networking 

operations to meet the top-level challenges of being adaptive, autonomous, cross-layer, secure, and scalable. 

Within the Cognitive Communications Project, there are other researchers working on waveforms and systems 

for adaptive coding and modulation, user-initiated services, and other technologies that will create more dynamic 

space links and dynamic sets of multiple space links at any given time.  NITRO technology will need to adapt 

network routing in accordance with the variable data rates, and dynamic links, including support for opportunistic 

(unscheduled) contacts.  Additionally, NITRO will accommodate multiple upper-layer protocols and applications, 

attempting to select proper routing based on the specific traffic or data flow requirements. 

NITRO technology will operate autonomously, to the greatest extent possible.  It will include features for self-

configuration and self-management, as basic cognitive technology goals. 

Because intelligent routing requires knowledge and even control of lower layer protocols and configurations, 

NITRO will require advanced cross-layer interfaces.  Because of the mix of legacy systems and future technologies 

that will coexist for some time, we expect NITRO to need to interact with multiple lower-layer protocols.  This 

includes both COTS industry and CCSDS protocols.  

Security is fundamental to NITRO, and performing security functions autonomously is a key challenge.  We are 

pursuing security techniques at multiple layers due to the architecture and need to support many possible mission 

protocol stacks. 

A final top-level goal for NITRO is scalable operation across both high and low-rate data links, including optical, 

Ka-band, or other high-bandwidth trunk links that may be needed for relay spacecraft.  Additionally, the processing 



 

American Institute of Aeronautics and Astronautics 

 

 

4 

capabilities of network nodes is wide-ranging from wearable spacesuit radios or other embedded computers to 

datacenter systems on the ground.  NITRO will need to be able to stitch together networks of diverse systems and 

meet high data-rate demands. 

II. Cognitive Space Network Architecture Concepts 

This section describes several important architecture features and concepts for introducing cognitive technology into 

space networks, especially with regard to the future SCaN infrastructure.  There is a large body of work on routing 

technology for satellite constellations and space networks.  Figure 2 attempts to put intelligent routing and cognitive 

networking into scope with prior work in the field††. 

 At the highest level, there is a distinction between static and dynamic network configurations.  In many of our 

early DTN experiments, we used static network configurations.  All parameters in these networks were manually 

configured by humans, at “design time”, prior to operating.  This has high operator burden, potential for error, and 

issues in scaling for large networks, which drives the need to move to dynamic configurations.  These can be divided 

between reactive and predictive techniques.  Typical terrestrial networks heavily use reactive protocols in the 

network “control plane”, where real-time decision making happens regarding service performance.  Reactive control 

plane protocols probe the network, sense changes, and alter configurations accordingly.  However, they have no 

concept of what may happen in the future, which is where predictive techniques have an advantage.  Time-triggered 

configuration changes can be pre-computed based on knowledge of orbits, schedules, and other physical factors or 

planned events.  As an example, classical DTN Contact Graph Routing (CGR) distributes the set of expected future 

inter-node contacts throughout the network, which is used by each node to make data forwarding decisions.  A 

proactive control plane extends time-triggering capabilities further into the control plane, and is able to use Software 

Defined Networking (SDN) technology to actually alter protocol behaviors across layers, and tune other parameters 

under guidance of a centralized intelligence.  SDN technology supports automation and adaptation capabilities, but 

by itself does not include machine learning features.  SDN can be part of an intelligent routing implementation, 

when used in combination with other cognitive technology. 

A major goal of NITRO is to minimize operator burden for routine network management tasks.  This will be 

achieved using learning within the network, adapting both configuration parameters and behaviors (e.g. algorithms, 

logic, code).  The network intelligence will be able to discover novel solutions to provide the needed services, 

outside of the constraints of pre-coded logic present in other non-intelligent routing technologies.  The rest of this 

section describes architectural features of a network with cognitive control plane capabilities. 

                                                           
†† This is a highly simplified perspective, to fit in the available space for this paper, and a more detailed technical 

comparison and contrast between intelligent routing techniques and other routing techniques is future work that we 

are preparing. 

 
Figure 2. Progression of routing technology towards cognitive control plane capabilities 
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A. Cognitive radio and cognitive networking 

Cross-layer coordination and information-sharing beyond today’s capabilities is essential.  Cognitive radio8 is an 

active research area, but much work to-date has been limited to dynamic spectrum access techniques.  Cognitive 

networking9 research builds on cognitive radio, and additionally involves higher-layers of the protocol stack. With 

cognitive technology, traditional static design parameters or configuration settings can now be dynamic throughout 

the entire communications stack. 

Similar to how cognitive radio systems are built on software-defined radios (SDRs), cognitive networking 

systems are assumed by most recent papers to be built on SDN technology10.  Space SDR technology is continuing 

to advance, and SDRs are beginning to have capabilities for supporting networking protocols in addition to 

traditional waveforms11.  Some extensions and enhancements to terrestrial SDN may be needed for space12, but SDR 

and SDN platforms will be crucial to enabling cognitive networking. 

Multiple cognitive engines may be operating at different layers, with differing scope, and at different points in 

the network. Cognitive processes with wider scope (e.g. system-wide across several radio links on a relay 

spacecraft) may overlap and even encompass other processes with smaller scope (e.g. running on individual radio 

devices or links).  Local and global optimization attempts by different cognitive engines will need to be coordinated 

efficiently.  This leads to additional architecture features described in the next several subsections on multiple 

scopes of cognitive operations, different roles, and computational offload capabilities. 

B. Multiple Administrative Domains 

Because the future SCaN infrastructure is intended to include or interact with commercial and international 

partner systems, there can be multiple administrative domains involved in end-to-end data flows.  Cognitive systems 

are able to communicate across different administrative domains, but may not always be able to alter or have 

detailed insight into systems belonging to other domains.  For instance, SCaN is a service provider network, and 

SCaN relays and ground stations are operated independent of science mission spacecraft.  While a SCaN relay may 

contain detailed knowledge of its radio capabilities and control over all link and routing parameters within the relay, 

it may not always have the ability to alter the user mission spacecraft accordingly.  Missions may or may not have 

their own cognitive systems, and the NASA enterprise encompassing both SCaN and the missions may one day even 

have cognitive systems to coordinate operations. 

Figure 3 illustrates examples of domains with differing administrative domains, from NASA enterprise level, 

down through SCaN and some example mission systems, into individual relay, ground station, and spacecraft 

platforms.  Note that this is simply an example.  Not all systems need to be cognitive, incremental deployment is 

expected, and some legacy mission and ground station examples are included.  When cognitive systems are 

operating in different administrative domains, and attempting to learn and optimize parameters and behaviors, it may 

be important for them to coordinate in order to avoid detrimental interactions.  As one example, if routing decisions 

made by a SCaN relay are not in concert with routing decisions made by a partner relay, then temporary routing 

loops could result, causing high link utilization, loss of data, or other impacts.  Existing control plane protocols 

attempt to avoid these problems, but do not learn or adjust in the same way that a cognitive system might. Protocols 

for cognitive systems to express intent and coordinate learning and adaptation actions are an area of future research. 

 
Figure 3. Domains and Hierarchy of Cognitive Systems Example 
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C. Global and Local Cognitive Processes 

Figure 3 shows brain icons indicating cognitive agents operating with different scopes within the example 

systems.  There are two sizes of icon illustrating differing roles of “big brain” and “little brain” cognitive systems in 

the architecture.  This sizing is related both to available hardware resources, as well as the role or function of the 

cognitive system.  “Little brain” cognitive systems have lower computing power (e.g. because they are onboard 

spacecraft platforms), tighter scope, and are operating with view and control of a smaller subset of resources. In 

comparison, the “big brain” systems may be operated terrestrially, for instance, with wider-scope and capabilities.  

For instance, a “big brain” could be optimizing resource allocations across the entire SCaN network, in order to 

maximize some utility function (e.g. based on meeting mission support requests) while maintaining high availability, 

whereas a “little brain” within a cognitive radio modem could be optimizing its parameters real-time during an 

individual contact event.  The global and local cognitive processes can work in parallel towards their different goals. 

Cognitive radio systems are mostly limited to local scope, and tied to the radio (or optical) front-ends and 

apertures that are available to them for use.  Other cognitive systems operating globally, may perform functions 

totally outside the radio.  As an example, intelligent routing can use network optimization techniques to plan routes 

across multiple systems, balance load, and perform other global traffic engineering functions.  Introducing cognitive 

technology into the service management system may allow a reduction of the role that scheduling plays in today’s 

SCaN operations, but for existing missions and services, legacy scheduling will be necessary to maintain for at least 

some of the resources.  As an early demonstration of cognitive technology, it could be applied to service 

management tasks while running in a “shadow mode” (operating in parallel to the existing systems, and without 

impacting them).  This could identify potential scheduling efficiencies, note anomalous conditions, audit system 

configurations, predict future loading, and be used to evaluate benefits without the risk of letting it immediately 

make operations decisions while running “live”. 

D. Computation Offload 

As noted previously, “little brains” can operate on limited computing systems (like typical flight hardware), 

whereas “big brain” systems may have more computing resources (e.g. more CPU cores, GPUs, or other specialized 

machine learning hardware).  Typically, the more significant computing resources will be terrestrial, but the 

architecture may be able to include some shared infrastructure nodes in-space, with greater computing powers.  In 

either case, it could be possible to offload some heavier computations, enabling the “little brains” to run expensive 

training and analysis computations offboard of their own limited hardware.  

As an example, a small in-space cognitive system can collect measurements, logs, and other historical behavior 

data relevant to itself.  This can be compressed and sent to a more capable computing system where training 

algorithms, genetic / evolutionary techniques, or other computationally expensive algorithms can be performed.  The 

resulting outputs (e.g. neural network weights, “fittest” genetic programming results, etc.) can then be uploaded 

back to the smaller in-space system for execution. 

E. Autonomic computing and autonomic networking 

Simple automation systems (e.g. scripting) as commonly used in spacecraft operations will not be sufficient to 

replace the role of humans, for which more fully autonomic systems are required.  Terminology and concepts for 

autonomic computing were established in seminal IBM work on the topic13, and many autonomic computing efforts 

exist, including for space systems, and in terrestrial networking.  IBM described a set of “self-management” 

concepts, including self-configuration, self-optimization, self-healing, and self-protection, and identified several 

engineering challenges for autonomic systems, all of which are applicable to space communications services.  Of 

particular interest, this includes: 

 Design, test, and verification – Current design techniques, heavily based on link-budget analysis, will not be 

sufficient when a cognitive system can alter all properties of the link(s), and can completely alter protocol 

configurations.  Current mission compatibility testing is primarily physical layer, and may also include 

rudimentary link layer properties, but covers a fixed set of intended communications modes.  With a cognitive 

radio, and additional networking layers, the scope and test methodology will need to be reconsidered. 

 Monitoring and problem determination – Autonomic systems monitor their performance, detect, and solve 

problems on their own.  However, like humans, cognitive communications systems can make mistakes.  

Communications, tracking, and navigation services are critical to mission success, and the SCaN elements 

today operate with high reliability requirements.  In order to prevent risks to the mission or crew (for manned 

missions), one challenge is to apply the technology in ways that avoid the potential for terminal states and/or 

limit the impact of erroneous decisions.  This has been less of an issue for many terrestrial uses of machine 

learning and artificial intelligence, but similar concerns apply in self-driving cars, aeronautics/UAVs, and 
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other emerging fields.  Cognitive space systems will need to support reporting and forensic capabilities in 

case of issues, in addition to their internal autonomic problem-solving processes. 

 Goal specification – For many simple optimization tasks, goals can easily be specified.  As an example, an 

adaptive rate waveform might maximize the modulation and coding bitrate for science data downlink.  

However, more holistic network-wide goals can be harder to specify to the machines.  While legacy non-

cognitive elements are controlled via specific commands, cognitive systems will be directed with descriptions 

of operator intent, and specific actions will then be chosen by the cognitive system. 

F. Flow-centric versus Information-centric Communications 

Most current networking technology is “flow-centric”, and makes routing decisions based on destination 

addresses, rather than the information content of packets.  Many mission systems have used message buses and 

similar data distribution systems, but it has not been part of a SCaN service offering.  With more complex missions, 

and intelligent routing able to determine packet contents and predict shared interests in data, there may be value in 

providing information-centric networking services in addition to purely flow-based services.  As one hypothetical 

case, space weather information collected by some spacecraft could be shared directly with other relevant space 

systems, without needing to pass through many intermediate systems first.  For instance, detected solar events that 

could be harmful to astronauts could be conveyed more quickly, particularly during operations away from Earth and 

omni-present communications with mission control.  Information-centric networking (ICN) technology being 

developed for terrestrial use14 may be adapted for space use. 

G. Cognitive Systems Engineering 

There are many types of artificial intelligence (AI) and machine learning (ML) technologies that can be used for 

different problems in cognitive networking.  For instance, selecting, configuring, and optimizing protocols for 

particular services is similar to classification tasks typically implemented by conventional neural networks.  Other 

problems may be more appropriate for expert systems, support vector machines, self-organizing maps, recurrent 

neural networks, learning automata, and/or agent-based approaches to intelligence. 

Some AI techniques are computationally expensive, beyond levels that may be appropriate to implement in 

space.  For instance, genetic programming and evolutionary algorithms are often (but not always) done with 

networks of dozens or hundreds of servers, with computing power far beyond what even a large relay spacecraft will 

be capable of.  The “big brain” architecture concept, however, allows computationally intensive activities to happen 

offline on capable nodes, and the results to be pushed back to lesser capable nodes.  This is similar, for instance, to 

how SDN already works in terrestrial networks, where routing solutions are computed centrally and distributed to all 

of the individual networking devices.  Neural network training, genetic algorithms, and other operations can happen 

centrally with results uplinked to relays and other network nodes, including potentially to user spacecraft.  This 

would allow cognitive networking technology to be supported on missions where the resources need to be devoted 

to primary science goals, and the size, weight, and power budgets can go towards science instruments or other 

mission systems, rather than being monopolized for cognitive communications. 

In terms of learning, the use of online versus offline learning approaches for different problems is a consideration 

for systems engineering of cognitive communications systems.  There will be large amounts of training data, 

including historical time-series, sets of specific “edge cases” or other pathological scenarios, regression testing data, 

and other sets of records important for learning and testing.  The provisioning of proper data sets to support the 

specific learning algorithms operating in different parts of the network is an important engineering task, and may be 

an ongoing part of operating a cognitive network.   

III. Initial Work Engineering a Cognitive Agent for SCaN Testbed 

The ScaN Testbed onboard the International Space Station has three SDRs with five CCSDS AOS/ENCAP 

network interfaces7.  Two of the interfaces go through S-band radios that connect directly to ground stations.  Two 

other interfaces go through the same radios but are relayed via the SN, and one interface is routed through a Ka-band 

radio that relays through the SN.  There are multiple service “on-ramps” on the flight system, supporting 

experiments directly over the CCSDS data links, experiments using Internet protocols (e.g. via IP-over-CCSDS 

standard), experiments using DTN, and other protocol stack configurations.  Gateway systems on the ground 

provide similar service on-ramps, at multiple layers of the communications stack. 
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For NITRO, using the SCaN Testbed allows 

us to tap into the stack in multiple places, and 

make configuration, routing, and data handling 

decisions across the whole stack.  The initial 

software package, called “Cogent”, discussed in 

this section supports adaptive routing, multilink 

operations, and handles both DTN and IP-based 

protocols.  It does not currently control the radio 

systems, where there are either fixed or adaptive 

waveforms running.   It treats anything between 

the CCSDS ENCAP interfaces as black boxes, 

and probes for connectivity, estimated data rate, 

and other parameters per ENCAP interface.  

Figure 4 shows how the Cogent design supports 

multiple link types, layers, and protocol stacks, 

and can work for either legacy applications or 

new cognitive applications (e.g. that may use 

more of an information-centric networking 

paradigm). 

At the boundaries between layers, Cogent 

creates virtual interfaces that represent 

ensembles of the lower-layer options.  This 

allows it to operate without impacting data 

flows that are routed directly to the actual 

lower-layer interfaces.  For instance, between 

IP and the link layers, the IP routing table is 

used to select an appropriate outgoing 

interface.  Particular experiment subnets can be 

routed to a Cogent virtual interface, while other 

traffic continues to be routed normally.  This 

demonstrates one way to operate cognitive 

networking in incremental deployment with legacy services, and with “failsafe” options to bypass the cognitive 

decision making. 

The current revision of Cogent software is sensing and adapting to link properties, but is not yet examining its 

own decisions and implementing learning algorithms.  These are planned later capabilities, discussed further with 

other future work in section IV of this document. 

A high-level view of the system design is shown in Figure 5.  Key elements of the Cogent design include: 

1. A cognitive engine that accepts link messages as data input, and other informational input to help with 

decision making. There are not standards or commonality across the SCaN Testbed for communicating 

status of the data links.  Each SDR has its own distinct telemetry format, and includes different 

information.  The Cogent software uses small discovery messages to establish the presence or absence of 

connectivity across a pair of ENCAP interfaces.  These messages are also used to probe and measure link 

characteristics, specifically including latency and throughput, that are measured and provided as input to 

the cognitive engine. 

2. An API on top of the cognitive engine that accepts data messages, and an optional set of constraints (or 

tags) attached to them.  For this prototype, only a few constraints are supported: “low-latency”, “low-

priority”, “high-priority”, and “high-throughput”. 

3. A scheduler algorithm sends messages on the available links.  Based on user-provided tags or inference of 

desired service parameters, the elements in the queue, and the discovered properties of each link, messages 

are selected for output to specific ENCAP interfaces.  A minimal wrapper protocol is used to identify and 

time-tag their transmission and receipt, offering a way to feedback information about success and updated 

link status in-band with the data stream.  This information is used to update link properties and guide 

selections in the future. 

4. A content cache to store data messages and metadata about them is available in order to support future 

information-centric networking, but is not currently used by the system. 

  
Figure 5. High-Level Cogent Architecture 

 

 
Figure 4. Cogent software stack design 
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Initial implementation for this effort has focused on enabling DTN data flows to adapt to data rate changes on 

the underlying links, and also providing DTN with the capability to utilize an ensemble of multiple links.  

Additionally, for applications with different quality of service concerns, the current iteration of Cogent is able to 

optimize radio link selection to minimize delay or maximize bandwidth.  For instance, Cogent can select a direct-to-

Earth rather than SN relay interface for low-latency, or a Ka-band rather than S-band link for high throughput.   

The prototype construction of Cogent is primarily intended to act as a tool to help us explore this research space.  

The goal is to identify the needed areas for future efforts by implementing an early cognitive agent on the SCaN 

Testbed.  Cogent has largely been a success in this regard. Through its design and implementation, we have been 

able to identify a number of gaps that we believe should be further explored to facilitate future efforts in the area of 

cognitive networking. 

In addition to using Cogent as an exploration tool, we have also designed Cogent to collect data throughout 

routine operations in order for us to build a corpus for future learning.  Data is collected for each of the onboard 

interfaces, on the flight system, and at each of the ground gateway systems.  Records are offloaded (in the form of 

custom telemetry packets) to various destinations, including local gateways and a central database for network-wide 

operations.  We expect to use this information to support  gateway-level “little brain” operations and network-wide 

“big brain” operations in the future, but we are early in the process of implementing appropriate learning algorithms.  

We currently expect to be able to extend the Cogent framework in this regard for NITRO, but there are likely to be 

other cognitive agents developed as well: for instance, we believe network-wide scheduling of data links could 

benefit from cognitive support. 

IV. Technology Gaps and Future Work 

To conclude this paper, we have a list of technology gaps and topics for future research work, based on our efforts 

so far.  This is not an exhaustive list, but identifies a subset of interesting and promising directions. 

 Cross-layer signaling – Probing as done in the early Cogent prototype is feasible for many cases in the 

near-earth regime, but not feasible for space networks in-general.  There are difficulties with large (e.g. 

interplanetary) delays, unidirectional link connectivity, asymmetric link properties, asymmetric routing, 

and other peculiarities of space communications topologies.  A better cross-layer signaling mechanism is 

desirable so that cognitive networking processes can communicate directly with local (or remote) link 

layer systems.  New standards or APIs may be needed in this area.  Functions including discovery, 

monitoring, and control are relevant.  Without standards, each mission or system composition will have 

difficulty achieving code-reuse, and will need to devote resources to interface code development rather 

than core cognitive engineering efforts. 

 Algorithm development – We are still gaining experience with particular learning algorithms and AI 

techniques for specific problems relevant to space communications.  While there is a large body of 

research for communications in general, most work applies to lower layers, and the cognitive networking 

field is less well-explored, even for terrestrial communications.  In some cases, techniques being applied 

for 5G communications systems could be considered for applicability to SCaN, but there are large 

differences in the service offerings of 5G providers versus SCaN’s service catalog, so additional 

algorithms are likely to be needed. 

 Computational Offload – Due to computational expense of training and learning algorithms, it may be 

useful to develop protocols and practices that enable computational offload of some parts of the cognitive 

functionality.  This would be similar to how some AI functions on mobile devices are offloaded to the 

cloud today, terrestrially. 

 Debugging and management of intelligent systems – Cognitive systems may reduce operator burden 

significantly in nominal scenarios and conditions, but during off-nominal or contingency situations, it 

may be more troublesome for human operators to debug and apply remedies alongside cognitive 

algorithms.  Failsafe techniques and practices will need to be developed for operating in conjunction with 

human administrators. 

 Self-knowledge - One of the fundamental aspects of cognitive radio, defined by Joe Mitola, is the 

capability to have self-knowledge and a comprehensive internal model of the system available for 

adaptation.  This is needed for more advanced capabilities like allowing the system to more extensively 

adapt and develop new protocol mechanisms, compositions, and other communications methods of its 

own devising.  Since space systems are now often being developed with Model-Based Systems 

Engineering (MBSE) techniques, it may be possible to leverage MBSE artifacts as one way to describe 

the system to itself.  Some MBSE models contain behavioral descriptions and parametric models that 
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could be used in simulations by a learning algorithm, as one example.  Machine-readable MBSE artifacts 

can be modified to reflect and capture adaptations made by the cognitive system as well. 

 Self-design– Learning of new protocols and behaviors is more complex than simply optimizing parameter 

sets, but is possible with techniques such as genetic programming, among others, that output software 

code or other design descriptions.  One practical example is the well-known NASA Ames work using 

genetic programming to develop novel antenna designs15.  Similar techniques could be extended into and 

across other parts of the space communications system, but has not yet been done. 

In all areas of future work, solutions can be implemented piecemeal for individual systems, and multiple 

approaches may be valid, however, in some cases it will be beneficial to establish standards.  Early-on, the most 

important cases for standards are in cross-layer interfaces, since there are many different device vendors, and 

multiple devices may be integrated into a communications system. 

In summary, SCaN’s future space communications infrastructure has aspects that drive the need to develop 

cognitive communications technologies, including cognitive networking.  Cognitive networking technology is still 

maturing terrestrially, and applying it for intelligent routing in space will be a significant challenge.  However, the 

benefits of cognitive networking can be worth the effort: cognitive engines can be used for everything from assisting 

mission operations personnel (allowing for more missions to be supported per staff member) to extending the life 

span and range of missions beyond that which has been historically possible (by allowing both objects and networks 

to adapt to unexpected circumstances without human intervention).   

In this paper, we described the differences between a cognitive control plane for intelligent routing, in 

comparison to well-known network routing and control-plane techniques.  We identified several architectural 

features and concepts for incorporation of cognitive networking into SCaN’s architecture.  We described early 

prototype code, currently addressing a small subset of the goals for cognitive networking, but with the ability to 

grow more features over time as we continue research in this area.  Finally, we have identified several fruitful 

research areas to fill the current technology gaps in future work. 
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